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Abstract
In this paper we first present some conditions on the extremality of invariant
measures of a Markov process. These conditions involve average convergence
and invariant functions of the process. We then combine these with coupling
and duality to study some aspects of convergence to invariant measures of
Markov processes. In particular, we suggest a new way of studying complete
convergence. Applications to interacting particle systems are given.

PACS numbers: 02.50.Ga, 02.50.Ey, 05.10.Gg, 05.50.+q

1. Introduction

Investigating invariant measures is one of the most important methods for studying a
stochastically interacting system which evolves in time. Usually, in physics or other fields,
these measures are used to describe the equilibrium or stable states of such a system. Thus
better characterizations of these invariant measures are more helpful, and even crucial in
many cases, in understanding the asymptotic behaviour, such as ergodicity, metastability and
fluctuation, etc, of the system. Typically, this can be reduced to characterizing the extremal
invariant measures. For example, for many important models, such as attractive spin flip
systems, the ergodicity is equivalent to the uniqueness of such extremal invariant measures,
see [9]. The motivation for considering the problems in this paper comes from the study of
interacting particle systems (IPS), where one of the most important problems is to determine
the set of all the invariant measures of a system under consideration, and then to describe
the domain of attraction for each of these invariant measures, i.e. starting from various initial
configurations to find out which given equilibrium state the system will approach as time
goes to infinity. In this paper we first try to describe the set of the invariant measures by
characterizing those extremal invariant measures from various aspects. Then we combine
these results with some powerful techniques, such as coupling and duality, etc, to study other
problems related to ergodicity, including convergence to invariant measures and complete
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convergence (which specifies the limiting law for each initial configuration), etc, the former
is related to some interesting open problems in IPS (see corollary 4.2 and [9]). We first work
with abstract Markov processes to obtain some general results. Then we apply these results
to IPS.

There are different notions of ergodicity, all involving the properties of the invariant
probability measures (stationary distributions) and certain convergence of the corresponding
Markov processes. We will specify the most commonly considered one in IPS and some
related modifications; see the definition below. Let E be a Polish space, � = D([0, ∞), E ) be
the space of functions from [0, ∞) to E which are right continuous with left limits, equipped
with the Skorohod topology. {Px, x ∈ E} is assumed to be a Markov family of probability
measures on �, with Px being weakly continuous in x. {S(t), t � 0} denotes the corresponding
Markov semigroup. Denote by m1(E ) the set of probability measures on E. For µ ∈ m1(E )
and t � 0, µS(t) ∈ m1(E ) is defined by∫

f dµS(t) =
∫

S(t)f dµ,

which is the law of the process at time t, starting with initial law µ. µ is said to be invariant
(or stationary) for {S(t), t � 0} (or for the Markov process) if µS(t) = µ ∀t � 0. Denote by
mi (E) the set of all such invariant µ.

Definition .

(1) A Markov process on � with semigroup {S(t), t � 0} is said to be ergodic, if mi (E) = {ν}
is a singleton and for each µ ∈ m1(E), limt→∞ µS(t) = ν weakly. The ergodicity is
said to be a strong one if the weak convergence is replaced by the convergence in the
τ -topology, i.e. for every measurable subset A of E,

lim
t→∞ µS(t)(A) = ν(A).

The ergodicity is said to be uniform if the convergence holds in the total variation norm
‖ · ‖. Here we recall that the total variation ‖µ‖ of a signed measure µ is equivalently
defined by

‖µ‖ = sup

{∫
f dµ: f bounded measurable with ‖f ‖∞ ≡ sup|f | � 1

}
.

(2) If we replace S(t) by T (t) = 1
t

∫ t

0 S(u) du, then the corresponding ergodicity will be said
to be average.

Thus to understand the ergodic behaviour, the first key step is to find out if mi (E) is
a singleton. It is known that this can be reduced to study if there is a unique extremal
stationary distribution (see, e.g., [9]). Therefore it is interesting to describe the set of all
extremal measures in mi (E), denoted by mi

e(E), as clearly as possible. In this paper we will
present in section 2 some equivalent conditions for extremality of µ ∈ mi (E) (theorem 2.1),
seen from various points of view. As an example of applications of this result, in section 4
we show extremality of a class of invariant measures for certain spin flip systems. These
equivalent conditions concern average convergence and invariant functions of the semigroup.
These notions are closely related to coupling and ergodicity. Consequently we then discuss
ergodicity in terms of average convergence and extremal invariant measures. In particular, our
results imply that strong average convergence is equivalent to the uniform one (theorem 2.2).

In section 3 we apply our results concerning extremality to study some aspects of
convergence to invariant measures, especially the so-called complete convergence, of Markov
processes. Combining these with a duality argument, in section 4 we discuss some potential
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applications of our results to interacting particle systems. We show that for a large class of
typical systems, the complete convergence consideration can be reduced to studying some
fundamental problems for certain continuous time Markov chains—a type of simpler and well
studied Markov process. We would like to point out that studying complete convergence is
usually hard work. For complete convergence of IPS, most of the techniques used in previous
works heavily rely on the specific construction of the individual models under consideration
(see, e.g., [9]). Our approach may be regarded as an attempt at exploring new and effective,
and universal in some sense, ways for studying this problem. In particular, as an example we
show that every linear voter or anti-voter model is completely convergent (see example 1 in
section 4). We hope that this approach can be further developed into a more practical and
effective technique. Our duality arguments also enable us to obtain a result on convergence to
invariant measures of these systems, which partially answered some important open problem
proposed in [9] for IPS.

2. Extremality of the invariant measure

Recall the definitions of S = {S(t), t � 0}, {T (t), t � 0}, m1(E),mi(E), and me
i (E).

For each ν ∈ Ei (E), S can be uniquely extended to L2(ν), denoted by Sν = {Sν(t), t � 0}.
A function f ∈ L2(ν) is called Sν-invariant, if Sν(t)f = f, ∀t � 0 ν-a.s. We denote
T ν(t)f = 1

t

∫ t

0 Sν(u)f du. mi,ν (E) is the set of measures in mi (E) that are absolutely
continuous w.r.t. ν. Then we have the following theorem:

Theorem 1. If mi(E) �= ∅, then me
i (E) �= ∅, and for ν ∈ mi(E) the following assertions are

equivalent:

(1) ν ∈ me
i (E);

(2) ∀f ∈ L2(ν), limt→∞ T ν(t)f = ν(f ) in L2(ν);
(3) For f ∈ L2(ν), if for some sequence tn → + ∞, T ν(tn)f = f ν-a.s., then f = const

ν-a.s.;
(4) Every Sν-invariant function in L2(ν) is ν-a.s. constant;
(5) Every bounded Sν-invariant function is ν-a.s. constant;
(6) mi,ν = {ν}.

Furthermore, different measures in me
i (E) are singular w.r.t. each other.

Proof. For ν ∈ m1(E), let Pν = ∫
Pxν(dx). From [4], theorem 1, Pν can be uniquely

represented as a generalized convex combination of stationary ergodic Markov measures on
�, and a stationary and ergodic measure Q on � is Markov associated with S iff its single time
marginal µQ is in me

i (E). Therefore, mi(E) �= ∅ implies me
i (E) �= ∅.

(1) ⇒ (2). Let ν ∈ me
i (E), then Pν is ergodic as just stated. Thus by the well-known

ergodic theorem, if f is bounded measurable on E, then

lim
t→∞

1

t

∫ t

0
f (xs) ds = ν(f ) =

(∫
f dν

)
Pν-a.s. and in L1(Pν).

Hence∫
|T ν(t)f − ν(f )|2 dν =

∫ ∣∣∣∣EPx
1

t

∫ t

0
f (xu) du − ν(f )

∣∣∣∣
2

dν

�
∫ ∣∣∣∣1

t

∫ t

0
f (xu) du − ν(f )

∣∣∣∣
2

dPν → 0 (t → ∞)

The extension to f ∈ L2(ν) is standard if one uses the fact that Cb(E) is dense in L2(ν).
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Obviously (2) ⇒ (3), (3) ⇒ (4) and (4) ⇒ (5). The proof of (2) ⇒ (1) is standard. We
now prove (5) ⇒ (2). Let f be bounded measurable. Since Pν is stationary on �, by the
ergodic theorem, the limits

g(x·) = lim
t→∞

1

t

∫ t

0
f (xu) du

exist Pν-a.s. and in L1(Pν). Then g is Pν-a.s. shift invariant, i.e. g(xt+·) = g(x.) Pν -a.s., and∫
g dPν = ν(f ). Define g0(x) = EPxg, then∫

|Sν(t)g0 − g0| dν =
∫ ∣∣EPxEPxt g − EPxg

∣∣ dν.

From the Markov property, the right-hand side is equal to∫ ∣∣EPx [g(xt+·) − g]
∣∣ dν �

∫
|g(xt+·) − g(x·)| dPν = 0.

This means that g0 is Sν-invariant. By assumption (4), g0 = constant ν-a.s. Hence∫
|T ν(t)f − ν(f )|2 dν =

∫ ∣∣∣∣EPx
1

t

∫ t

0
f (xu) du − EPxg

∣∣∣∣
2

dν

� 2‖f ‖∞
∫ ∣∣∣∣1

t

∫ t

0
f (xu) du − g

∣∣∣∣ dPν → 0 (t → ∞)

where ‖f ‖∞ is the uniform norm of f . Now it remains to prove (1) ⇒ (6), since (6) ⇒ (1) is
trivial. Let ν ∈ me

i (E) and µ ∈ mi,ν . Denote p = dµ
dν . Then clearly 1 � α = ∫

p ∧1 dν > 0.
We now show that indeed α = 1. If α > 1, define

dµ1 = α−1(p ∧ 1) dν and dµ2 = (1 − α)−1(1 − p ∧ 1) dν

then from proposition 2.2 in [1] we know that µ1, µ2 ∈ mi (E) and

ν = αµ1 + (1 − α)µ2

By the extremality of ν, µ1 = µ2. This implies p ∧ 1 = α < 1, ν-a.s. That is, p < 1 ν-a.s.,
contradicting the definition of p.

Thus we obtain that p = 1 ν-a.s., i.e. µ = ν. Hence we have mi,ν = {ν}. The last
conclusion of the theorem is a simple consequence of (2). �

Remark 2.1.

(1) We may compare the above theorem with the results in [9], chapter IV, where it
was proved that for a stochastical Ising model, ν is an extremal Gibbs state iff
∀f ∈ L2(ν), limt→∞ Sν(t)f = ν(f ) in L2(ν), and different extremal Gibbs states
are singular. These were key facts in proving the uniqueness of Gibbs states. Other
relevant results can be found in [1, 2, 5].

(2) In [4], we also proved that every µ ∈ mi(E) is a generalized convex combination of
measures in me

i (E).

Our next result is an application of theorem 2.1 and results concerning coupling. For
coupling and fundamental theory, see [6, 10]. Here we only use some results given in [7, 12].
Denote by S the set of all time-invariant measurable subsets in �.

Theorem 2.2. Let ν ∈ mi(E)

(1) For µ ∈ m1(E), limt→∞ µT (t) = ν strongly iff it holds uniformly. In particular,
if the Markov process is transient, then the above convergence is also equivalent to
limt→∞ µS(t) = ν uniformly.
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(2) If ν ∈ me
i (E) and µ � ν, then limt→∞ µT (t) = ν uniformly. In particular, if

me
i (E) = {ν} with Supp(ν) = E, where Supp(ν) is the support of ν, then S = {S(t), t � 0}

is uniformly average ergodic.

Proof.

(1) Obviously we only need to prove that strong convergence implies the uniform one.
From the results in [7, 12], what we need to show is that Pµ|S = Pν |S , where for
π ∈ m1(E), Pπ = ∫

Pxπ(dx). Let A ∈ S. Define fA(x) = Px(A) for x ∈ E. Then by
the shift invariance of A and the Markov property,

Pµ(A) = 1

t

∫ t

0
EPµPxu

(A) du = 1

t

∫ t

0
du

∫
S(u)fA dµ = µT (t)fA.

By the assumption, limt→∞ µT (t)fA = ν(fA) = Pν(A), proving the desired result.
(2) Let ν ∈ me

i (E) and µ � ν. For A ∈ S, by theorem 2.1 (2) there is a sequence tn → + ∞,
such that T (tn)fA → ν(fA) = Pν(A) (n → ∞) ν-a.s. Thus

|Pµ(A) − Pν(A)| =
∣∣∣∣
∫

T (tn)fA dµ − ν(fA)

∣∣∣∣
�

∫
|T (tn)fA − ν(fA)| dµ → 0 (n → ∞)

i.e. Pµ|S = Pν |S . �

3. Complete convergence

Now we turn to the complete convergence for certain Markov processes. By complete
convergence, here we mean that ∀µ ∈ m1(E), µS(t) converges to some ν ∈ mi(E) weakly
as t → ∞. It is usually hard to prove such a type of convergence in general cases. Our
results which follow suggest a method for studying this topic. To present them, we impose
the following hypothesis:

(H)For each f ∈ Cb(E), each x ∈ E and each h > 0

lim
t→∞ |S(t + h)f (x) − S(t)f (x)| = 0.

A rough interpretation of this condition is that the difference between the laws of the system
at any two different times with (arbitrary) fixed time difference will become negligible as the
time tends to infinity, which is a property of shift invariance. As one can see from the proof
of theorem 3.1, as a consequence of this condition, any limiting function of a subsequence of
S(t)f for f ∈ Cb(E) is S-invariant (see theorem 3.1 for definition). We are now in a position
to state our next main result.

Theorem 3.1. Assume (H) and that
⋃

ν∈me
i (E) Supp(ν) = E.

(1) If for every function f in a dense subset Cb,0 (E) of Cb (E) and every sequence tn → ∞,
there is an S-invariant function f0 ∈ Cb(E) (i.e. S(t)f0 = f0, ∀t � 0) and a subsequence
tnk

, such that

lim
k→∞

S(tnk
)f = f0 holds on some dense E0 ⊂ E (3.1)

then there is a π ∈ m1
(
me

i (E)
)
, such that ∀µ ∈ m1(E), limt→∞ µS(t) = ∫

νπ(dν)
weakly. In particular, if me

i (E) = {ν} with Supp(ν) = E, then the process is ergodic.
(2) If ∀f ∈ Cb,0(E) and every sequence tn → ∞, the family of functions {S(tn)f, n � 1} on

E is equi-continuous, then the same conclusion as above holds.
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On the other hand, if for some different ν1 and ν2 ∈ me
i (E), Supp(ν1) ∩ Supp(ν2) �= ∅,

then complete convergence does not hold.

Remark 3.1.

(i) A direct consequence of this theorem is that if a diffusion process on some bounded
domain D has the Lebesgue measure as an invariant measure, then it is ergodic.

(ii) As we will show later, every non-explosive continuous-time Markov chain satisfies all the
above conditions, except for ∪ν∈me

i (E)Supp(ν) = E. This is useful in further applications
to IPS. Another situation in which the condition in (2) holds trivially is that when Px is
continuous in x in the uniform norm on m1(�).

The following lemmas, which may have further applications, are key to proving the
theorem.

Lemma 3.1. Assume (H). Then for every ν ∈ me
i (E) and every bounded measurable function

f on E, limt→∞ S(t)f = ν(f ) in probability ν.

Proof. Since ν ∈ me
i (E) and f is bounded, from therorem 2.1(2), ∀ε and δ > 0, we can

choose a sufficiently large T, such that∣∣∣∣ 1

T

∫ T

0
S(u)f du − ν(f )

∣∣∣∣ dν <
εδ

2
.

Note that

ν(|S(t)f − ν(f )| > δ) � *1(t) + *2(t)

where

*1(t) = ν

(∣∣∣∣ 1

T

∫ T

0
S(t + u)f du − ν(f )

∣∣∣∣ > δ/2

)

and

*2(t) = ν

(∣∣∣∣ 1

T

∫ T

0
S(t + u)f du − S(t)

∣∣∣∣ > δ/2

)
.

We have by the Markov property and the stationarity of ν that

*1(t) � 2

δ

∫ ∣∣∣∣ 1

T

∫ T

0
S(t + u)f du − ν(f )

∣∣∣∣ dν � 2

δ

∫
dν

∣∣∣∣
∫ T

0
S(u)f du − ν(f )

∣∣∣∣ < ε

for large T > 0 and that, by (H), for such a fixed T,

*2(t) � 2

δ

∫
dν

1

T

∫ T

0
|S(t + u)f − S(t)f | du < ε

for sufficiently large t, proving the lemma. �

Lemma 3.2. If for each ν ∈ me
i (E) and each f ∈ Cb(E), limt→∞ S(t)f = f0 ν-a.s. for

some f0 ∈ Cb(E), then for different ν1, ν2 ∈ me
i (E), Supp(ν1) ∩ Supp(ν2) = ∅.

Proof. Let ν ∈ mi
e(E), f and f0 ∈ Cb(E) satisfy the above condition. Then f0 is Sν-invariant.

Thus by theorem 2.1, f0 = ν(f0) = ν(f ) ν-a.s. By the continuity of f0 we see that f0 = ν(f )

on Supp(ν). The desired conclusion follows from this. �
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Proof of theorem 3.1.

(1) Let f, f0, tn and tnk satisfy (3.1). Then f0 is S-invariant by (H). From the proof of
lemma 3.2 we see that f0 = ν(f ) on Supp(ν). This implies that limt→∞ S(t)f (x) = ν(f )

on Supp(ν), i.e. limt→∞ δxS(t) = ν for x ∈ Supp(ν). The desired conclusion follows
from this, lemma 3.2 and the assumption that ∪ν∈me

i (E )Supp(ν) = E.
(2) For any fixed ν ∈ me

i (E), by lemma 3.1, for each f ∈ Cb,0(E ) and every sequence
tn → ∞, there is a subsequence tnk such that limk→∞ S(tnk

)f = ν(f ) ν-a.s. Now since{
S
(
tnk

)
f, k � 1

}
is equi-continuous on E, it is easily seen that limk→∞ S

(
tnk

)
f = ν(f )

on Supp(ν). It then follows that limt→∞ S(t)f = ν(f ) on Supp(ν). Then as for
(1), the desired conclusion follows easily. The last conclusion is a direct consequence of
lemma 3.2. �
As we stated at the beginning of the introduction, the study of our problems originates

from understanding some ergodic behaviour of IPS. Duality is one of the powerful tools used
to do this. Our next result is an application of theorem 3.1 concerning duality.

Corollary 3.1. Let E1 be a compact Polish space, E2 be a Polish space, Si = {Si(t), t � 0}
be a Markov process on Ei, i = 1, 2. We assume S2 satisfies the conditions of theorem 3.1.
If for each f in some dense subset Cb,0(E1) of Cb(E1), there are a finite number of bounded
measurable functions f2,1, . . . , f2,l on E1 × E2 which are continuous in the second argument,
such that for each x1 ∈ E1, we can find x2,1, . . . , x2,l ∈ E2 so that

S1(t)f (x1) =
l∑

i=1

S2 (t) f2,i (x1, ·)(x2,i ) ∀t � 0

then the semigroup S1 is completely convergent.

Proof. By theorem 3.1, limt→∞ S2(t)f2,i (x1, ·)(x2,i) exists. Thus limt→∞ δx1S1(t)f = Lx1(f )

exists for any x1 ∈ E1 and f ∈ Cb,0(E). Applying Riesz’s representation theorem we see that
there is a measure νx1 ∈ m1(E1) such that Lx1(f ) = νx1(f ). �

4. Applications to IPS

Now we sketch some applications of the above results to IPS. We mainly consider two classes
of important IPS (spin flip and exclusion systems on Zd) which are Feller–Markov processes
� = D([0, ∞), E1) with E1 = {0, 1}Zd

. It is expected that the following arguments can be
applied to more general IPS. A spin flip system is characterized by a family of spin flip rates
{c(i, ·), i ∈ Zd}, where for each i ∈ Zd, c(i, ·) is a non-negative continuous function on E1,
which characterizes the change of state at site i. At any time, this change may take place at
one site only. The generater A of such a system acts on any local function f on E as

Af (η) =
∑
i∈Zd

c(i, η)[f (ηi) − f (η)]

where for η ∈ E and i ∈ Zd, ηi ∈ E is defined by ηi(j) = η(j) if j �= i; = 1−η(j) otherwise.
For an exclusion system, however, at any time, only interchange of states between two sites
may occur. The interchanges are characterized by a transition probability matrix p(i, j)
on Zd . The generator of the system acts on a local function as

Af (η) =
∑

i,j∈Zd

p(i, j)[f (ηi,j ) − f (η)]
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where for η ∈ E and i, j ∈ Zd, ηi,j ∈ E is defined by ηi,j (k) = η(j) if k = i; = η(i) if k =
j ; = η(k) otherwise. For precise description of these systems see ([9], ch III and VIII).

As for the first application, we present a result concerning extremality of a class of
invariant measures of the systems.

Theorem 4.1.

(1) For a spin flip system with strictly positive spin flip rates c(·, ·), let ν be an invariant
measure of it. Then ν is extremal iff every ν-integrable function f on E that satisfies

f (ηi) = f (η) ∀i ν-a.s. (4.1)

is ν-a.s. constant.
(2) For an exclusion process with irreducible p(i, j), an invariant measure ν of it is extremal

iff every ν-integrable function f that satisfies

f (ηi,j ) = f (η) ∀i, j ν-a.s.

is ν-a.s. constant.

In particular, if an invariant measure ν of one of the above systems satisfies a zero-one
law on the tail σ -algebra T on E, i.e. ν(A) = 0 or ∀A ∈ T , then ν is extremal.

Sketch of proof. We only prove the first conclusion. The proof of the second conclusion is
similar. For sufficiency, let f be a bounded and Sν-invariant function on E. Then an argument
similar to the one used in the proof of lemma IV.4.3 shows that

0 =
∫

f Af dν = −1

2

∑
i∈Zd

∫
c(i, η)[f (ηi) − f (η)]2 dν.

Thus, since c(·, ·) is strictly positive, f (ηi) = f (η) ∀i ν-a.s. By assumptions, f = constant
ν-a.s. on E. From theorem 2.1 we see that ν is extremal.

For necessity, let ν be an extremal invariant measure of the system, f be a ν-integrable
function on E satisfying (4.1). By a standard argument, we can assume that f is bounded and
satisfies

α ≡
∫

f dν > 0.

Define ν1 by

dν1 = α−1f dν.

It is not hard to check that ∀f ∈ D(A)—the domain of A∫
Af dν1 = 0

i.e. ν1 ∈ mi(E). Since ν1 � ν, by theorem 2.1 we obtain that ν1 = ν. It follows that f =
constant ν-a.s. on E.

The last conclusion of the theorem follows from the fact that a function f satisfying (4.1)
is T -measurable and the assumption on ν.

Remark 4.1. A simple consequence of the theorem is that if a product measure ν on E with
constant marginal density is invariant for the system under consideration, then it is extremal.
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Now we turn to applications of the results presented in sections 2 and 3 to convergence to
invariant measures of the systems. To do this, we consider only those spin flip systems with
spin flip rates given by (4.3)–(4.10) in ([9], ch III, section 4) and symmetric exclusion systems.
Most typical and interesting systems, such as contact, voter and anti-voter models, etc, are
included. One of the fundamental facts we will use for these systems is that if we denote by S1

the Markov semigroup of such a system, then there is a continuous time non-explosive Markov
chain S2 on some countable state space E2, and a non-negative function V on E2, such that for
each local function f on E1 (i.e. for some finite 3 ⊂ Zd, f (η) depends only on {η(i), i ∈ 3}),
there are bounded measurable functions f2,i , 1 � i � l, on E1 × E2, such that for each η ∈
E1, there are y1, . . . , yl ∈ E2 so that

S1(t) f (η) =
l∑

i=1

Eyi f2,i (η, yt ) exp

{
−

∫ t

0
V (yu) du

}
∀t � 0.

Note that the semigroup

SV (t)g(y) = Eyg(yt ) exp

{
−

∫ t

0
V (yu) du

}

on E2 is sub-Markov, i.e. SV (t)1 � 1, we can add a point * to E2 to make SV a nonexplosive
Markov chain on E2 (cf [6]). Thus we see that (3.1) is satisfied. Therefore if we can prove the
complete convergence for the dual Markov chain, then we will know that the corresponding
IPS is completely convergent. The following proposition gives a useful result for Markov
chains.

Proposition . Let S = {S(t), t � 0} be a nonexplosive Markov chain on a countable state
space E. Then (H) is satisfied.

Proof. Let f ∈ Cb(E) and h0 > 0. Consider the discrete time Markov chain {S(nh0), n � 1}.
From [11] we know that

lim
n→∞ sup

x

|S(nh0 + h0)f (x) − S(nh0)f (x)| = 0.

Define φ(t) = |S(t + h)f (x) − S(t)f (x)|. Then φ ∈ Cb([0, ∞)), and ∀h > h0

lim
n→∞φ(nh) � lim

n→∞ sup
x

|S(nh0 + h0)f (x) − S(nh0)f (x)| = 0.

Thus from the result in [8] we see that limt→∞ φ(t) = 0. �
If the state space E of the Markov chain is equipped with the discrete topology, then

obviously the family {S(t)f, t � 0} is equi-continuous on E for each f ∈ Cb(E). Therefore
the only condition we need to check for complete convergence is that ∪ν∈me

i (E ) Supp(ν) = E.
In particular, if E can be decomposed into several subsets E1, . . . , Er , such that either Ei

consists of absorbing states, or the chain is ergodic on Ei, then the chain is completely
convergent; see the following example for a discussion.

Example 1. For simplicity, consider a one-dimensional linear voter model, which is a spin
flip system on Z with spin flip rates given by

c(i, η) = 1
2 |{j = −1, 1 : η(i + j) �= η(i)}|

where |A| denotes the cardinality of A ⊂ Z. Then its dual Markov chain is the one with state
space Y = the collection of all finite subsets of Z, and with transition rates given by

q(A,B) =



1
2 if A �= ∅ and B = (A − x) ∪ {x − 1} or (A − x) ∪ {x + 1}
|A| if A �= ∅ and B = A

0 otherwise .
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It is not hard to check that ∅ and ∞ are absorbing states of this chain, and the chain is
irreducible on Y0 = Y − {∅, {∞}}. Using an argument similar to the one appearing in the
proof of theorem 4.58 in [6] we can see that this Markov chain on Y0 is ergodic. Combining
this with the above proposition one can easily show that this Markov chain, and hence the
voter model, is completely convergent. Extention to more general voter models is direct.

A similar argument applies to linear anti-voter models. The next is an example for which
complete convergence does not hold.

Example 2. Now consider an exclusion system with the states interchanging rate between i
and j ∈ Zd given by p(i, j). It is known that if p(·, ·) is doubly stochastic, i.e.

∑
j p(i, j) =∑

i p(i, j) = 1 ∀i, j ∈ Zd , then every product measure να with constant density α is invariant
for this system. Thus by theorem 3.1, it cannot have complete convergence.

The following is a direct consequence of the above proposition.

Corollary 4.1. For every spin flip or exclusion system described above, (H) holds.

Combining this with lemma 3.1 we have the following interesting application which is
relevant to the open problem presented in [9]:

Corollary 4.2. Given a spin flip or exclusion system described as above with state space E =
{0, 1}Zd

. For µ ∈ m1(E) and sequence tn → ∞, if limn→∞ µS (tn) exists in the weak topology,
then the limit is in mi (E).

Proof. The assertion follows from (H) easily. �
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